23 research outputs found

    High gain dual-band couple feed transparent THz antenna for satellite communications

    Get PDF
    An Indium-doped tin oxide (ITO) based optically transparent aperture coupled rectangular patch antenna is resonated at 0.750 and 1.1 THz and then its performances is analyzed. The aperture couple feed method has been used to feed the antenna. The antenna characteristics such as bandwidth and radiation properties are investigated. The proposed antennas' specifications are investigated and then compared with both gold, copper and conventional aperture coupled rectangular antenna at the desired resonant frequencies (0.75 and 1.1 THz). Then to improve performance of the antenna, the patch is covered by a layer of Carbon Nano Tube (CNT). The proposed transparent antenna have achieved impedance bandwidth of 38% and 19% in the band of 0.75 GHz and 1.1 THz respectively. The proposed antenna has a peak gain of 7.7 and 10.3 dB which is better than conventional rectangular patch antenna gain; besides, the radiation efficiency is more than 85% across the operation frequency band. The design technique was verified through the simulation and the results show its capability to improve overall performance of the THz antennas

    Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm

    Get PDF
    Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects. A miniaturized elliptical ultra-wideband (UWB) antenna and its semi-spherical array arrangement were used for signal transmission and reception from the defected locations in the breast skin. Several conditions such as various arrays of three, six, and nine antenna elements, smaller tumor, multi-tumors, and skin on a larger breast sample of 30 cm were considered. To assess the ability of the system, a breast shape container with a diameter of 130 mm and height of 60 mm was 3D printed and then filled with fabricated skin and breast fat to perform the experimental investigation. An improved modified time-reversal algorithm (IMTR) was used to recreate 2D images of tumors with the smallest radius of 1.75 mm in any location within the breast skin. The reconstructed images using both simulated and experimental data verified that the system can be a reliable imaging system for skin cancer diagnosis having a high structural similarity index and resolution

    A Miniaturized and Highly Sensitive Microwave Sensor Based on CSRR for Characterization of Liquid Materials

    Get PDF
    In this work, a miniaturized and highly sensitive microwave sensor based on a complementary split-ring resonator (CSRR) is proposed for the detection of liquid materials. The modeled sensor was designed based on the CSRR structure with triple rings (TRs) and a curve feed for improved measurement sensitivity. The designed sensor oscillates at a single frequency of 2.5 GHz, which is simulated using an Ansys HFSS simulator. The electromagnetic simulation explains the basis of the mode resonance of all two-port resonators. Five variations of the liquid media under tests (MUTs) are simulated and measured. These liquid MUTs are as follows: without a sample (without a tube), air (empty tube), ethanol, methanol, and distilled water (DI). A detailed sensitivity calculation is performed for the resonance band at 2.5 GHz. The MUTs mechanism is performed with a polypropylene tube (PP). The samples of dielectric material are filled into PP tube channels and loaded into the CSRR center hole; the E-fields around the sensor affect the relationship with the liquid MUTs, resulting in a high Q-factor value. The final sensor has a Q-factor value and sensitivity of 520 and 7.032 (MHz)/Er) at 2.5 GHz, respectively. Due to the high sensitivity of the presented sensor for characterizing various liquid penetrations, the sensor is also of interest for accurate estimations of solute concentrations in liquid media. Finally, the relationship between the permittivity and Q-factor value at the resonant frequency is derived and investigated. These given results make the presented resonator ideal for the characterization of liquid materials.Publicad

    Electronic bandgap miniaturized UWB antenna for near-field microwave investigation of skin

    Get PDF
    Near-field microwave investigation and tomography has many practical applications, especially where the trend of fields and signals in different environments is vital. This article shows an elliptical patch ultra-wideband antenna fed by a transmission line for the near-field characterization of cancerous cells in the skin. The antenna comprises an elliptical patch, stub loading to shift the band to lower bands, and an electronic bandgap structure on the ground side. Even though the antenna has a low profile of 15 × 15 mm2, the proposed antenna has more promising results than recent studies. Furthermore, both simulated near-field and far-field results show a broad bandwidth of 3.9–30 GHz and a resonance at 2.4 GHz applicable for industrial, scientific, and medical band applications. The proposed antenna also illustrates a peak gain of 6.48 dBi and a peak directivity of 7.09 dBi. Free space and skin (on a layer of breast fat and a tumor with a diameter of 4 mm at the boundary of skin and breast) are used as test environments during the simulation and measurement of near-field and far-field investigations while considering a phantom breast shape. Both far-field and near-field microwave investigations are performed in Computer Simulation Technology studio, and results are then compared with the measured data. The simulated and measured results are in good agreement, and the focused energy around the tumor is completely reconstructed. Therefore, the proposed antenna can be an adequate candidate for the differentiation of breast skin and tumor to reconstruct the tumor’s image

    Full ground ultra-wideband wearable textile antenna for breast cancer and wireless area body network applications

    Get PDF
    Wireless body area network (WBAN) applications have broad utility in monitoring patient health and transmitting the data wirelessly. WBAN can greatly benefit from wearable antennas. Wearable antennas provide comfort and continuity of the monitoring of the patient. Therefore, they must be comfortable, flexible, and operate without excessive degradation near the body. Most wearable antennas use a truncated ground, which increases specific absorption rate (SAR) undesirably. A full ground ultra-wideband (UWB) antenna is proposed and utilized here to attain a broad bandwidth while keeping SAR in the acceptable range based on both 1 g and 10 g standards. It is designed on a denim substrate with a dielectric constant of 1.4 and thickness of 0.7 mm alongside the ShieldIt conductive textile. The antenna is fed using a ground coplanar waveguide (GCPW) through a substrate-integrated waveguide (SIW) transition. This transition creates a perfect match while reducing SAR. In addition, the proposed antenna has a bandwidth (BW) of 7–28 GHz, maximum directive gain of 10.5 dBi and maximum radiation efficiency of 96%, with small dimensions of 60 × 50 × 0.7 mm3. The good antenna’s performance while it is placed on the breast shows that it is a good candidate for both breast cancer imaging and WBAN

    Design and evaluation of a flexible dual-band meander line monopole antenna for on- and off-body healthcare applications

    Get PDF
    The human body is an extremely challenging environment for wearable antennas due to the complex antenna-body coupling effects. In this article, a compact flexible dual-band planar meander line monopole antenna (MMA) with a truncated ground plane made of multiple layers of standard off-the-shelf materials is evaluated to validate its performance when worn by different subjects to help the designers who are shaping future complex on-/off-body wireless devices. The antenna was fabricated, and the measured results agreed well with those from the simulations. As a reference, in free-space, the antenna provided omnidirectional radiation patterns (ORP), with a wide impedance bandwidth of 1282.4 (450.5) MHz with a maximum gain of 3.03 dBi (4.85 dBi) in the lower (upper) bands. The impedance bandwidth could reach up to 688.9 MHz (500.9 MHz) and 1261.7 MHz (524.2 MHz) with the gain of 3.80 dBi (4.67 dBi) and 3.00 dBi (4.55 dBi), respectively, on the human chest and arm. The stability in results shows that this flexible antenna is sufficiently robust against the variations introduced by the human body. A maximum measured shift of 0.5 and 100 MHz in the wide impedance matching and resonance frequency was observed in both bands, respectively, while an optimal gap between the antenna and human body was maintained. This stability of the working frequency provides robustness against various conditions including bending, movement, and relatively large fabrication tolerances

    High gain triple-band metamaterial-based antipodal Vivaldi MIMO antenna for 5G communications

    Get PDF
    This paper presents a miniaturized dual-polarized Multiple Input Multiple Output (MIMO) antenna with high isolation. The antenna meets the constraints of sub-6 GHz 5G and the smartphones’ X-band communications. A vertically polarized modified antipodal Vivaldi antenna and a horizontally polarized spiral antenna are designed and integrated, and then their performance is investigated. Three frequency bands of 3.8 GHz, 5.2 GHz, and 8.0 GHz are considered, and the proposed dual-polarized antenna is studied. High isolation of greater than 20 dB is obtained after integration of metamaterial elements, and without applying any other decoupling methods. The proposed triple-band metamaterial-based antenna has 1.6 GHz bandwidth (BW) (2.9 GHz–4.5 GHz), 13.5 dBi gain, and 98% radiation efficiency at 3.8 GHz. At 5.2 GHz it provides 1.2 GHz BW, 9.5 dBi gain, and 96% radiation efficiency. At 8.0 GHz it has 1 GHz BW, 6.75 dBi gain, and 92% radiation efficiency. Four antenna elements (with eight ports) were laid out orthogonally at the four corners of a mobile printed circuit board (PCB) to be utilized as a MIMO antenna for 5G communications. The performance of the MIMO antenna is examined and reported

    A bra monitoring system using a miniaturized wearable ultra-wideband MIMO antenna for breast cancer imaging

    Get PDF
    This paper represents a miniaturized, dual-polarized, multiple input–multiple output (MIMO) wearable antenna. A vertically polarized, leaf-shaped antenna and a horizontally polarized, tree-shaped antenna are designed, and the performance of each antenna is investigated. After designing the MIMO antenna, it is loaded with stubs, parasitic spiral, and shorting pins to reduce the coupling effects and remove the unwanted resonances. Afterward, the two-port MIMO cells are spaced by 2 mm and rotated by 90° to create three more cells. The antennas are designed using two layers of denim and felt substrates with dielectric constants of 1.2 and 1.8, and thicknesses of 0.5 mm and 0.9 mm, respectively, along with the ShieldIt™ conductive textile. The antenna covers a bandwidth of 4.8–30 GHz when the specific absorption rate (SAR) meets the 1 g and 10 g standards. Isolation greater than 18 dB was obtained and mutual coupling was reduced after integrating shorting pins and spiral parasitic loadings. A maximum radiation efficiency and directive gain of 96% and 5.72 dBi were obtained, respectively, with the relatively small size of 11 × 11 × 1.4 mm3 for the single element and final dimensions of 24 × 24 × 1.4 mm3 for the full assembly. The antenna’s performance was examined for both on-body (breast) and free space conditions using near-field microwave imaging. The achieved results such as high fidelity, low SAR, and accuracy in localization of the tumour indicate that the MIMO antenna is a decent candidate for breast cancer imaging

    Wearable metamaterial dual-polarized high isolation UWB MIMO Vivaldi antenna for 5G and satellite communications

    Get PDF
    A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8–31 GHz) and vertically polarized (7.6–37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7–3.85 GHz and 5–40 GHz are achieved. Low mutual coupling of less than −22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with = 1.4 and h= 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 10⁴. After optimizing the proposed UWB-MIMO antenna’s characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications

    Compact elliptical UWB antenna for underwater wireless communications

    Get PDF
    The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their associated devices are smaller in comparison with sonar and ultrasonic. Thus, transceivers should have broad BW to cover more of a frequency band, especially from ultra-wideband (UWB) systems, which show potential outcomes. However, previous designs of similar work for underwater communications were very complicated, uneasy to fabricate, and large. Therefore, to overcome these shortcomings, a novel compact elliptical UWB antenna is designed to resonate from 1.3 to 7.2 GHz. It is invented from a polytetrafluoroethylene (PTFE) layer with a dielectric constant of 2.55 mm and a thickness of 0.8 mm. The proposed antenna shows higher gain and radiation efficiency and stability throughout the working band when compared to recent similarly reported designs, even at a smaller size. The characteristics of the functioning antenna are investigated through fluid mediums of fresh-water, seawater, distilled water, and Debye model water. Later, its channel capacity, bit rate error, and data rate are evaluated. The results demonstrated that the antenna offers compact, easier fabrication with better UWB characteristics for underwater 5G communications
    corecore